1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
//! The search process, without backjumping.
use crate::{
cells::{CellRef, State},
rules::{typebool::Bool, Rule},
search::{private::Sealed, Algorithm, Reason as TraitReason, SetCell},
world::World,
};
#[cfg(feature = "serde")]
use crate::{error::Error, save::ReasonSer};
#[cfg(doc)]
use crate::cells::LifeCell;
/// The default algorithm based on David Bell's
/// [lifesrc](https://github.com/DavidKinder/Xlife/tree/master/Xlife35/source/lifesearch).
#[derive(Clone, Copy, Default, Debug, PartialEq, Eq)]
pub struct LifeSrc;
impl Sealed for LifeSrc {}
impl<R: Rule> Algorithm<R> for LifeSrc {
type Reason = Reason;
type ConflReason = ();
#[inline]
fn new() -> Self {
Self
}
#[inline]
fn confl_from_cell(_cell: CellRef<R>) -> Self::ConflReason {}
#[inline]
fn confl_from_sym(_cell: CellRef<R>, _sym: CellRef<R>) -> Self::ConflReason {}
#[inline]
fn init_front(world: World<R, Self>) -> World<R, Self> {
world
}
#[inline]
fn set_cell(
world: &mut World<R, Self>,
cell: CellRef<R>,
state: State,
reason: Self::Reason,
) -> Result<(), Self::ConflReason> {
world.set_cell_impl(cell, state, reason)
}
#[inline]
fn go(world: &mut World<R, Self>, step: &mut u64) -> bool {
world.go(step)
}
#[inline]
fn retreat(world: &mut World<R, Self>) -> bool {
world.retreat_impl()
}
#[cfg(feature = "serde")]
#[cfg_attr(any(docs_rs, github_io), doc(cfg(feature = "serde")))]
#[inline]
fn deser_reason(_world: &World<R, Self>, ser: &ReasonSer) -> Result<Self::Reason, Error> {
Ok(match *ser {
ReasonSer::Known => Reason::Known,
ReasonSer::Decide => Reason::Decide,
ReasonSer::TryAnother(n) => Reason::TryAnother(n),
_ => Reason::Deduce,
})
}
}
/// Reasons for setting a cell.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Reason {
/// Known before the search starts,
Known,
/// Decides the state of a cell by choice.
Decide,
/// Determines the state of a cell by other cells.
Deduce,
/// Tries another state of a cell when the original state
/// leads to a conflict.
///
/// Remembers the number of remaining states to try.
///
/// Only used in Generations rules.
TryAnother(usize),
}
impl<R: Rule> TraitReason<R> for Reason {
const KNOWN: Self = Self::Known;
const DECIDED: Self = Self::Decide;
#[inline]
fn from_cell(_cell: CellRef<R>) -> Self {
Self::Deduce
}
#[inline]
fn from_sym(_cell: CellRef<R>) -> Self {
Self::Deduce
}
#[inline]
fn is_decided(&self) -> bool {
matches!(self, Self::Decide | Self::TryAnother(_))
}
#[cfg(feature = "serde")]
#[cfg_attr(any(docs_rs, github_io), doc(cfg(feature = "serde")))]
#[inline]
fn ser(&self) -> ReasonSer {
match self {
Self::Known => ReasonSer::Known,
Self::Decide => ReasonSer::Decide,
Self::Deduce => ReasonSer::Deduce,
Self::TryAnother(n) => ReasonSer::TryAnother(*n),
}
}
}
impl<R: Rule> World<R, LifeSrc> {
/// Sets the [`state`](LifeCell#structfield.state) of a cell,
/// push it to the [`set_stack`](#structfield.set_stack),
/// and update the neighborhood descriptor of its neighbors.
///
/// The original state of the cell must be unknown.
///
/// Return `false` if the number of living cells exceeds the
/// [`max_cell_count`](#structfield.max_cell_count) or the front becomes empty.
pub(crate) fn set_cell_impl(
&mut self,
cell: CellRef<R>,
state: State,
reason: Reason,
) -> Result<(), ()> {
cell.state.set(Some(state));
let mut result = Ok(());
cell.update_desc(state, true);
if state == !cell.background {
self.cell_count[cell.coord.2 as usize] += 1;
if let Some(max) = self.config.max_cell_count {
if self.cell_count() > max {
result = Err(());
}
}
}
if cell.is_front && state == cell.background {
self.front_cell_count -= 1;
if self.non_empty_front && self.front_cell_count == 0 {
result = Err(());
}
}
self.set_stack.push(SetCell::new(cell, reason));
result
}
/// Retreats to the last time when a unknown cell is decided by choice,
/// and switch that cell to the other state.
///
/// Returns `true` if successes,
/// `false` if it goes back to the time before the first cell is set.
fn retreat_impl(&mut self) -> bool {
while let Some(SetCell { cell, reason }) = self.set_stack.pop() {
match reason {
Reason::Decide => {
let (state, reason) = if R::IsGen::VALUE {
let State(j) = cell.state.get().unwrap();
(
State((j + 1) % self.rule.gen()),
Reason::TryAnother(self.rule.gen() - 2),
)
} else {
(!cell.state.get().unwrap(), Reason::Deduce)
};
self.check_index = self.set_stack.len() as u32;
self.next_unknown = cell.next;
self.clear_cell(cell);
if self.set_cell_impl(cell, state, reason).is_ok() {
return true;
}
}
Reason::TryAnother(n) => {
let State(j) = cell.state.get().unwrap();
let state = State((j + 1) % self.rule.gen());
let reason = if n == 1 {
Reason::Deduce
} else {
Reason::TryAnother(n - 1)
};
self.check_index = self.set_stack.len() as u32;
self.next_unknown = cell.next;
self.clear_cell(cell);
if self.set_cell_impl(cell, state, reason).is_ok() {
return true;
}
}
Reason::Known => {
break;
}
Reason::Deduce => {
self.clear_cell(cell);
}
}
}
self.set_stack.clear();
self.check_index = 0;
self.next_unknown = None;
false
}
/// Keeps proceeding and backtracking,
/// until there are no more cells to examine (and returns `true`),
/// or the backtracking goes back to the time before the first cell is set
/// (and returns `false`).
///
/// It also records the number of steps it has walked in the parameter
/// `step`. A step consists of a [`proceed`](Self::proceed) and a [`retreat`](Self::retreat).
fn go(&mut self, step: &mut u64) -> bool {
loop {
*step += 1;
if self.proceed().is_ok() {
return true;
} else {
self.conflicts += 1;
if !self.retreat_impl() {
return false;
}
}
}
}
}