1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/*!
Provides some helpers for dealing with start state configurations in DFAs.
[`Start`] represents the possible starting configurations, while
[`StartByteMap`] represents a way to retrieve the `Start` configuration for a
given position in a haystack.
*/
use crate::util::{
look::LookMatcher,
search::Input,
wire::{self, DeserializeError, SerializeError},
};
/// A map from every possible byte value to its corresponding starting
/// configuration.
///
/// This map is used in order to lookup the start configuration for a particular
/// position in a haystack. This start configuration is then used in
/// combination with things like the anchored mode and pattern ID to fully
/// determine the start state.
///
/// Generally speaking, this map is only used for fully compiled DFAs and lazy
/// DFAs. For NFAs (including the one-pass DFA), the start state is generally
/// selected by virtue of traversing the NFA state graph. DFAs do the same
/// thing, but at build time and not search time. (Well, technically the lazy
/// DFA does it at search time, but it does enough work to cache the full
/// result of the epsilon closure that the NFA engines tend to need to do.)
#[derive(Clone)]
pub(crate) struct StartByteMap {
map: [Start; 256],
}
impl StartByteMap {
/// Create a new map from byte values to their corresponding starting
/// configurations. The map is determined, in part, by how look-around
/// assertions are matched via the matcher given.
pub(crate) fn new(lookm: &LookMatcher) -> StartByteMap {
let mut map = [Start::NonWordByte; 256];
map[usize::from(b'\n')] = Start::LineLF;
map[usize::from(b'\r')] = Start::LineCR;
map[usize::from(b'_')] = Start::WordByte;
let mut byte = b'0';
while byte <= b'9' {
map[usize::from(byte)] = Start::WordByte;
byte += 1;
}
byte = b'A';
while byte <= b'Z' {
map[usize::from(byte)] = Start::WordByte;
byte += 1;
}
byte = b'a';
while byte <= b'z' {
map[usize::from(byte)] = Start::WordByte;
byte += 1;
}
let lineterm = lookm.get_line_terminator();
// If our line terminator is normal, then it is already handled by
// the LineLF and LineCR configurations. But if it's weird, then we
// overwrite whatever was there before for that terminator with a
// special configuration. The trick here is that if the terminator
// is, say, a word byte like `a`, then callers seeing this start
// configuration need to account for that and build their DFA state as
// if it *also* came from a word byte.
if lineterm != b'\r' && lineterm != b'\n' {
map[usize::from(lineterm)] = Start::CustomLineTerminator;
}
StartByteMap { map }
}
/// Return the forward starting configuration for the given `input`.
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn fwd(&self, input: &Input) -> Start {
match input
.start()
.checked_sub(1)
.and_then(|i| input.haystack().get(i))
{
None => Start::Text,
Some(&byte) => self.get(byte),
}
}
/// Return the reverse starting configuration for the given `input`.
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn rev(&self, input: &Input) -> Start {
match input.haystack().get(input.end()) {
None => Start::Text,
Some(&byte) => self.get(byte),
}
}
#[cfg_attr(feature = "perf-inline", inline(always))]
fn get(&self, byte: u8) -> Start {
self.map[usize::from(byte)]
}
/// Deserializes a byte class map from the given slice. If the slice is of
/// insufficient length or otherwise contains an impossible mapping, then
/// an error is returned. Upon success, the number of bytes read along with
/// the map are returned. The number of bytes read is always a multiple of
/// 8.
pub(crate) fn from_bytes(
slice: &[u8],
) -> Result<(StartByteMap, usize), DeserializeError> {
wire::check_slice_len(slice, 256, "start byte map")?;
let mut map = [Start::NonWordByte; 256];
for (i, &repr) in slice[..256].iter().enumerate() {
map[i] = match Start::from_usize(usize::from(repr)) {
Some(start) => start,
None => {
return Err(DeserializeError::generic(
"found invalid starting configuration",
))
}
};
}
Ok((StartByteMap { map }, 256))
}
/// Writes this map to the given byte buffer. if the given buffer is too
/// small, then an error is returned. Upon success, the total number of
/// bytes written is returned. The number of bytes written is guaranteed to
/// be a multiple of 8.
pub(crate) fn write_to(
&self,
dst: &mut [u8],
) -> Result<usize, SerializeError> {
let nwrite = self.write_to_len();
if dst.len() < nwrite {
return Err(SerializeError::buffer_too_small("start byte map"));
}
for (i, &start) in self.map.iter().enumerate() {
dst[i] = start.as_u8();
}
Ok(nwrite)
}
/// Returns the total number of bytes written by `write_to`.
pub(crate) fn write_to_len(&self) -> usize {
256
}
}
impl core::fmt::Debug for StartByteMap {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
use crate::util::escape::DebugByte;
write!(f, "StartByteMap{{")?;
for byte in 0..=255 {
if byte > 0 {
write!(f, ", ")?;
}
let start = self.map[usize::from(byte)];
write!(f, "{:?} => {:?}", DebugByte(byte), start)?;
}
write!(f, "}}")?;
Ok(())
}
}
/// Represents the six possible starting configurations of a DFA search.
///
/// The starting configuration is determined by inspecting the the beginning
/// of the haystack (up to 1 byte). Ultimately, this along with a pattern ID
/// (if specified) and the type of search (anchored or not) is what selects the
/// start state to use in a DFA.
///
/// As one example, if a DFA only supports unanchored searches and does not
/// support anchored searches for each pattern, then it will have at most 6
/// distinct start states. (Some start states may be reused if determinization
/// can determine that they will be equivalent.) If the DFA supports both
/// anchored and unanchored searches, then it will have a maximum of 12
/// distinct start states. Finally, if the DFA also supports anchored searches
/// for each pattern, then it can have up to `12 + (N * 6)` start states, where
/// `N` is the number of patterns.
///
/// Handling each of these starting configurations in the context of DFA
/// determinization can be *quite* tricky and subtle. But the code is small
/// and can be found at `crate::util::determinize::set_lookbehind_from_start`.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub(crate) enum Start {
/// This occurs when the starting position is not any of the ones below.
NonWordByte = 0,
/// This occurs when the byte immediately preceding the start of the search
/// is an ASCII word byte.
WordByte = 1,
/// This occurs when the starting position of the search corresponds to the
/// beginning of the haystack.
Text = 2,
/// This occurs when the byte immediately preceding the start of the search
/// is a line terminator. Specifically, `\n`.
LineLF = 3,
/// This occurs when the byte immediately preceding the start of the search
/// is a line terminator. Specifically, `\r`.
LineCR = 4,
/// This occurs when a custom line terminator has been set via a
/// `LookMatcher`, and when that line terminator is neither a `\r` or a
/// `\n`.
///
/// If the custom line terminator is a word byte, then this start
/// configuration is still selected. DFAs that implement word boundary
/// assertions will likely need to check whether the custom line terminator
/// is a word byte, in which case, it should behave as if the byte
/// satisfies `\b` in addition to multi-line anchors.
CustomLineTerminator = 5,
}
impl Start {
/// Return the starting state corresponding to the given integer. If no
/// starting state exists for the given integer, then None is returned.
pub(crate) fn from_usize(n: usize) -> Option<Start> {
match n {
0 => Some(Start::NonWordByte),
1 => Some(Start::WordByte),
2 => Some(Start::Text),
3 => Some(Start::LineLF),
4 => Some(Start::LineCR),
5 => Some(Start::CustomLineTerminator),
_ => None,
}
}
/// Returns the total number of starting state configurations.
pub(crate) fn len() -> usize {
6
}
/// Return this starting configuration as `u8` integer. It is guaranteed to
/// be less than `Start::len()`.
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn as_u8(&self) -> u8 {
// AFAIK, 'as' is the only way to zero-cost convert an int enum to an
// actual int.
*self as u8
}
/// Return this starting configuration as a `usize` integer. It is
/// guaranteed to be less than `Start::len()`.
#[cfg_attr(feature = "perf-inline", inline(always))]
pub(crate) fn as_usize(&self) -> usize {
usize::from(self.as_u8())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn start_fwd_done_range() {
let smap = StartByteMap::new(&LookMatcher::default());
assert_eq!(Start::Text, smap.fwd(&Input::new("").range(1..0)));
}
#[test]
fn start_rev_done_range() {
let smap = StartByteMap::new(&LookMatcher::default());
assert_eq!(Start::Text, smap.rev(&Input::new("").range(1..0)));
}
#[test]
fn start_fwd() {
let f = |haystack, start, end| {
let smap = StartByteMap::new(&LookMatcher::default());
let input = &Input::new(haystack).range(start..end);
smap.fwd(input)
};
assert_eq!(Start::Text, f("", 0, 0));
assert_eq!(Start::Text, f("abc", 0, 3));
assert_eq!(Start::Text, f("\nabc", 0, 3));
assert_eq!(Start::LineLF, f("\nabc", 1, 3));
assert_eq!(Start::LineCR, f("\rabc", 1, 3));
assert_eq!(Start::WordByte, f("abc", 1, 3));
assert_eq!(Start::NonWordByte, f(" abc", 1, 3));
}
#[test]
fn start_rev() {
let f = |haystack, start, end| {
let smap = StartByteMap::new(&LookMatcher::default());
let input = &Input::new(haystack).range(start..end);
smap.rev(input)
};
assert_eq!(Start::Text, f("", 0, 0));
assert_eq!(Start::Text, f("abc", 0, 3));
assert_eq!(Start::Text, f("abc\n", 0, 4));
assert_eq!(Start::LineLF, f("abc\nz", 0, 3));
assert_eq!(Start::LineCR, f("abc\rz", 0, 3));
assert_eq!(Start::WordByte, f("abc", 0, 2));
assert_eq!(Start::NonWordByte, f("abc ", 0, 3));
}
}