1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
use std::borrow::Cow;
use std::cell::RefCell;
use std::collections::hash_map::HashMap;
use std::collections::HashSet;
use std::hash::BuildHasher;
use std::rc::Rc;
use std::sync::atomic::AtomicBool;
use std::sync::Arc;

use syn::{Expr, Lit, Meta, NestedMeta};

use crate::{util::path_to_string, Error, Result};

/// Create an instance from an item in an attribute declaration.
///
/// # Implementing `FromMeta`
/// * Do not take a dependency on the `ident` of the passed-in meta item. The ident will be set by the field name of the containing struct.
/// * Implement only the `from_*` methods that you intend to support. The default implementations will return useful errors.
///
/// # Provided Implementations
/// ## bool
///
/// * Word with no value specified - becomes `true`.
/// * As a boolean literal, e.g. `foo = true`.
/// * As a string literal, e.g. `foo = "true"`.
///
/// ## char
/// * As a char literal, e.g. `foo = '#'`.
/// * As a string literal consisting of a single character, e.g. `foo = "#"`.
///
/// ## String
/// * As a string literal, e.g. `foo = "hello"`.
/// * As a raw string literal, e.g. `foo = r#"hello "world""#`.
///
/// ## Number
/// * As a string literal, e.g. `foo = "-25"`.
/// * As an unquoted positive value, e.g. `foo = 404`. Negative numbers must be in quotation marks.
///
/// ## ()
/// * Word with no value specified, e.g. `foo`. This is best used with `Option`.
///   See `darling::util::Flag` for a more strongly-typed alternative.
///
/// ## Option
/// * Any format produces `Some`.
///
/// ## `Result<T, darling::Error>`
/// * Allows for fallible parsing; will populate the target field with the result of the
///   parse attempt.
pub trait FromMeta: Sized {
    fn from_nested_meta(item: &NestedMeta) -> Result<Self> {
        (match *item {
            NestedMeta::Lit(ref lit) => Self::from_value(lit),
            NestedMeta::Meta(ref mi) => Self::from_meta(mi),
        })
        .map_err(|e| e.with_span(item))
    }

    /// Create an instance from a `syn::Meta` by dispatching to the format-appropriate
    /// trait function. This generally should not be overridden by implementers.
    ///
    /// # Error Spans
    /// If this method is overridden and can introduce errors that weren't passed up from
    /// other `from_meta` calls, the override must call `with_span` on the error using the
    /// `item` to make sure that the emitted diagnostic points to the correct location in
    /// source code.
    fn from_meta(item: &Meta) -> Result<Self> {
        (match *item {
            Meta::Path(_) => Self::from_word(),
            Meta::List(ref value) => Self::from_list(
                &value
                    .nested
                    .iter()
                    .cloned()
                    .collect::<Vec<syn::NestedMeta>>()[..],
            ),
            Meta::NameValue(ref value) => Self::from_value(&value.lit),
        })
        .map_err(|e| e.with_span(item))
    }

    /// When a field is omitted from a parent meta-item, `from_none` is used to attempt
    /// recovery before a missing field error is generated.
    ///
    /// **Most types should not override this method.** `darling` already allows field-level
    /// missing-field recovery using `#[darling(default)]` and `#[darling(default = "...")]`,
    /// and users who add a `String` field to their `FromMeta`-deriving struct would be surprised
    /// if they get back `""` instead of a missing field error when that field is omitted.
    ///
    /// The primary use-case for this is `Option<T>` fields gracefully handlling absence without
    /// needing `#[darling(default)]`.
    fn from_none() -> Option<Self> {
        None
    }

    /// Create an instance from the presence of the word in the attribute with no
    /// additional options specified.
    fn from_word() -> Result<Self> {
        Err(Error::unsupported_format("word"))
    }

    /// Create an instance from a list of nested meta items.
    #[allow(unused_variables)]
    fn from_list(items: &[NestedMeta]) -> Result<Self> {
        Err(Error::unsupported_format("list"))
    }

    /// Create an instance from a literal value of either `foo = "bar"` or `foo("bar")`.
    /// This dispatches to the appropriate method based on the type of literal encountered,
    /// and generally should not be overridden by implementers.
    ///
    /// # Error Spans
    /// If this method is overridden, the override must make sure to add `value`'s span
    /// information to the returned error by calling `with_span(value)` on the `Error` instance.
    fn from_value(value: &Lit) -> Result<Self> {
        (match *value {
            Lit::Bool(ref b) => Self::from_bool(b.value),
            Lit::Str(ref s) => Self::from_string(&s.value()),
            Lit::Char(ref ch) => Self::from_char(ch.value()),
            _ => Err(Error::unexpected_lit_type(value)),
        })
        .map_err(|e| e.with_span(value))
    }

    /// Create an instance from a char literal in a value position.
    #[allow(unused_variables)]
    fn from_char(value: char) -> Result<Self> {
        Err(Error::unexpected_type("char"))
    }

    /// Create an instance from a string literal in a value position.
    #[allow(unused_variables)]
    fn from_string(value: &str) -> Result<Self> {
        Err(Error::unexpected_type("string"))
    }

    /// Create an instance from a bool literal in a value position.
    #[allow(unused_variables)]
    fn from_bool(value: bool) -> Result<Self> {
        Err(Error::unexpected_type("bool"))
    }
}

// FromMeta impls for std and syn types.

impl FromMeta for () {
    fn from_word() -> Result<Self> {
        Ok(())
    }
}

impl FromMeta for bool {
    fn from_word() -> Result<Self> {
        Ok(true)
    }

    #[allow(clippy::wrong_self_convention)] // false positive
    fn from_bool(value: bool) -> Result<Self> {
        Ok(value)
    }

    fn from_string(value: &str) -> Result<Self> {
        value.parse().map_err(|_| Error::unknown_value(value))
    }
}

impl FromMeta for AtomicBool {
    fn from_meta(mi: &Meta) -> Result<Self> {
        FromMeta::from_meta(mi)
            .map(AtomicBool::new)
            .map_err(|e| e.with_span(mi))
    }
}

impl FromMeta for char {
    #[allow(clippy::wrong_self_convention)] // false positive
    fn from_char(value: char) -> Result<Self> {
        Ok(value)
    }

    fn from_string(s: &str) -> Result<Self> {
        let mut chars = s.chars();
        let char1 = chars.next();
        let char2 = chars.next();

        if let (Some(char), None) = (char1, char2) {
            Ok(char)
        } else {
            Err(Error::unexpected_type("string"))
        }
    }
}

impl FromMeta for String {
    fn from_string(s: &str) -> Result<Self> {
        Ok(s.to_string())
    }
}

/// Generate an impl of `FromMeta` that will accept strings which parse to numbers or
/// integer literals.
macro_rules! from_meta_num {
    ($ty:ident) => {
        impl FromMeta for $ty {
            fn from_string(s: &str) -> Result<Self> {
                s.parse().map_err(|_| Error::unknown_value(s))
            }

            fn from_value(value: &Lit) -> Result<Self> {
                (match *value {
                    Lit::Str(ref s) => Self::from_string(&s.value()),
                    Lit::Int(ref s) => Ok(s.base10_parse::<$ty>().unwrap()),
                    _ => Err(Error::unexpected_lit_type(value)),
                })
                .map_err(|e| e.with_span(value))
            }
        }
    };
}

from_meta_num!(u8);
from_meta_num!(u16);
from_meta_num!(u32);
from_meta_num!(u64);
from_meta_num!(usize);
from_meta_num!(i8);
from_meta_num!(i16);
from_meta_num!(i32);
from_meta_num!(i64);
from_meta_num!(isize);

/// Generate an impl of `FromMeta` that will accept strings which parse to floats or
/// float literals.
macro_rules! from_meta_float {
    ($ty:ident) => {
        impl FromMeta for $ty {
            fn from_string(s: &str) -> Result<Self> {
                s.parse().map_err(|_| Error::unknown_value(s))
            }

            fn from_value(value: &Lit) -> Result<Self> {
                (match *value {
                    Lit::Str(ref s) => Self::from_string(&s.value()),
                    Lit::Float(ref s) => Ok(s.base10_parse::<$ty>().unwrap()),
                    _ => Err(Error::unexpected_lit_type(value)),
                })
                .map_err(|e| e.with_span(value))
            }
        }
    };
}

from_meta_float!(f32);
from_meta_float!(f64);

/// Parsing support for punctuated. This attempts to preserve span information
/// when available, but also supports parsing strings with the call site as the
/// emitted span.
impl<T: syn::parse::Parse, P: syn::parse::Parse> FromMeta for syn::punctuated::Punctuated<T, P> {
    fn from_value(value: &Lit) -> Result<Self> {
        if let Lit::Str(ref ident) = *value {
            ident
                .parse_with(syn::punctuated::Punctuated::parse_terminated)
                .map_err(|_| Error::unknown_lit_str_value(ident))
        } else {
            Err(Error::unexpected_lit_type(value))
        }
    }
}

/// Adapter from `syn::parse::Parse` to `FromMeta`.
///
/// This cannot be a blanket impl, due to the `syn::Lit` family's need to handle non-string values.
/// Therefore, we use a macro and a lot of impls.
macro_rules! from_syn_parse {
    ($ty:path) => {
        impl FromMeta for $ty {
            fn from_string(value: &str) -> Result<Self> {
                syn::parse_str(value).map_err(|_| Error::unknown_value(value))
            }

            fn from_value(value: &::syn::Lit) -> Result<Self> {
                if let ::syn::Lit::Str(ref v) = *value {
                    v.parse::<$ty>()
                        .map_err(|_| Error::unknown_lit_str_value(v))
                } else {
                    Err(Error::unexpected_lit_type(value))
                }
            }
        }
    };
}

from_syn_parse!(syn::Ident);
from_syn_parse!(syn::Expr);
from_syn_parse!(syn::ExprArray);
from_syn_parse!(syn::ExprPath);
from_syn_parse!(syn::Path);
from_syn_parse!(syn::Type);
from_syn_parse!(syn::TypeArray);
from_syn_parse!(syn::TypeBareFn);
from_syn_parse!(syn::TypeGroup);
from_syn_parse!(syn::TypeImplTrait);
from_syn_parse!(syn::TypeInfer);
from_syn_parse!(syn::TypeMacro);
from_syn_parse!(syn::TypeNever);
from_syn_parse!(syn::TypeParam);
from_syn_parse!(syn::TypeParen);
from_syn_parse!(syn::TypePath);
from_syn_parse!(syn::TypePtr);
from_syn_parse!(syn::TypeReference);
from_syn_parse!(syn::TypeSlice);
from_syn_parse!(syn::TypeTraitObject);
from_syn_parse!(syn::TypeTuple);
from_syn_parse!(syn::Visibility);
from_syn_parse!(syn::WhereClause);

macro_rules! from_numeric_array {
    ($ty:ident) => {
        /// Parsing an unsigned integer array, i.e. `example = "[1, 2, 3, 4]"`.
        impl FromMeta for Vec<$ty> {
            fn from_value(value: &Lit) -> Result<Self> {
                let expr_array = syn::ExprArray::from_value(value)?;
                // To meet rust <1.36 borrow checker rules on expr_array.elems
                let v =
                    expr_array
                        .elems
                        .iter()
                        .map(|expr| match expr {
                            Expr::Lit(lit) => $ty::from_value(&lit.lit),
                            _ => Err(Error::custom("Expected array of unsigned integers")
                                .with_span(expr)),
                        })
                        .collect::<Result<Vec<$ty>>>();
                v
            }
        }
    };
}

from_numeric_array!(u8);
from_numeric_array!(u16);
from_numeric_array!(u32);
from_numeric_array!(u64);
from_numeric_array!(usize);

impl FromMeta for syn::Lit {
    fn from_value(value: &Lit) -> Result<Self> {
        Ok(value.clone())
    }
}

macro_rules! from_meta_lit {
    ($impl_ty:path, $lit_variant:path) => {
        impl FromMeta for $impl_ty {
            fn from_value(value: &Lit) -> Result<Self> {
                if let $lit_variant(ref value) = *value {
                    Ok(value.clone())
                } else {
                    Err(Error::unexpected_lit_type(value))
                }
            }
        }
    };
}

from_meta_lit!(syn::LitInt, Lit::Int);
from_meta_lit!(syn::LitFloat, Lit::Float);
from_meta_lit!(syn::LitStr, Lit::Str);
from_meta_lit!(syn::LitByte, Lit::Byte);
from_meta_lit!(syn::LitByteStr, Lit::ByteStr);
from_meta_lit!(syn::LitChar, Lit::Char);
from_meta_lit!(syn::LitBool, Lit::Bool);
from_meta_lit!(proc_macro2::Literal, Lit::Verbatim);

impl FromMeta for syn::Meta {
    fn from_meta(value: &syn::Meta) -> Result<Self> {
        Ok(value.clone())
    }
}

impl FromMeta for Vec<syn::WherePredicate> {
    fn from_string(value: &str) -> Result<Self> {
        syn::WhereClause::from_string(&format!("where {}", value))
            .map(|c| c.predicates.into_iter().collect())
    }

    fn from_value(value: &Lit) -> Result<Self> {
        if let syn::Lit::Str(s) = value {
            syn::WhereClause::from_value(&syn::Lit::Str(syn::LitStr::new(
                &format!("where {}", s.value()),
                value.span(),
            )))
            .map(|c| c.predicates.into_iter().collect())
        } else {
            Err(Error::unexpected_lit_type(value))
        }
    }
}

impl FromMeta for ident_case::RenameRule {
    fn from_string(value: &str) -> Result<Self> {
        value.parse().map_err(|_| Error::unknown_value(value))
    }
}

impl<T: FromMeta> FromMeta for Option<T> {
    fn from_none() -> Option<Self> {
        Some(None)
    }

    fn from_meta(item: &Meta) -> Result<Self> {
        FromMeta::from_meta(item).map(Some)
    }
}

impl<T: FromMeta> FromMeta for Box<T> {
    fn from_none() -> Option<Self> {
        T::from_none().map(Box::new)
    }

    fn from_meta(item: &Meta) -> Result<Self> {
        FromMeta::from_meta(item).map(Box::new)
    }
}

impl<T: FromMeta> FromMeta for Result<T> {
    fn from_none() -> Option<Self> {
        T::from_none().map(Ok)
    }

    fn from_meta(item: &Meta) -> Result<Self> {
        Ok(FromMeta::from_meta(item))
    }
}

/// Parses the meta-item, and in case of error preserves a copy of the input for
/// later analysis.
impl<T: FromMeta> FromMeta for ::std::result::Result<T, Meta> {
    fn from_meta(item: &Meta) -> Result<Self> {
        T::from_meta(item)
            .map(Ok)
            .or_else(|_| Ok(Err(item.clone())))
    }
}

impl<T: FromMeta> FromMeta for Rc<T> {
    fn from_none() -> Option<Self> {
        T::from_none().map(Rc::new)
    }

    fn from_meta(item: &Meta) -> Result<Self> {
        FromMeta::from_meta(item).map(Rc::new)
    }
}

impl<T: FromMeta> FromMeta for Arc<T> {
    fn from_none() -> Option<Self> {
        T::from_none().map(Arc::new)
    }

    fn from_meta(item: &Meta) -> Result<Self> {
        FromMeta::from_meta(item).map(Arc::new)
    }
}

impl<T: FromMeta> FromMeta for RefCell<T> {
    fn from_none() -> Option<Self> {
        T::from_none().map(RefCell::new)
    }

    fn from_meta(item: &Meta) -> Result<Self> {
        FromMeta::from_meta(item).map(RefCell::new)
    }
}

/// Trait to convert from a path into an owned key for a map.
trait KeyFromPath: Sized {
    fn from_path(path: &syn::Path) -> Result<Self>;
    fn to_display(&self) -> Cow<'_, str>;
}

impl KeyFromPath for String {
    fn from_path(path: &syn::Path) -> Result<Self> {
        Ok(path_to_string(path))
    }

    fn to_display(&self) -> Cow<'_, str> {
        Cow::Borrowed(self)
    }
}

impl KeyFromPath for syn::Path {
    fn from_path(path: &syn::Path) -> Result<Self> {
        Ok(path.clone())
    }

    fn to_display(&self) -> Cow<'_, str> {
        Cow::Owned(path_to_string(self))
    }
}

impl KeyFromPath for syn::Ident {
    fn from_path(path: &syn::Path) -> Result<Self> {
        if path.segments.len() == 1
            && path.leading_colon.is_none()
            && path.segments[0].arguments.is_empty()
        {
            Ok(path.segments[0].ident.clone())
        } else {
            Err(Error::custom("Key must be an identifier").with_span(path))
        }
    }

    fn to_display(&self) -> Cow<'_, str> {
        Cow::Owned(self.to_string())
    }
}

macro_rules! hash_map {
    ($key:ty) => {
        impl<V: FromMeta, S: BuildHasher + Default> FromMeta for HashMap<$key, V, S> {
            fn from_list(nested: &[syn::NestedMeta]) -> Result<Self> {
                // Convert the nested meta items into a sequence of (path, value result) result tuples.
                // An outer Err means no (key, value) structured could be found, while an Err in the
                // second position of the tuple means that value was rejected by FromMeta.
                //
                // We defer key conversion into $key so that we don't lose span information in the case
                // of String keys; we'll need it for good duplicate key errors later.
                let pairs = nested
                    .iter()
                    .map(|item| -> Result<(&syn::Path, Result<V>)> {
                        match *item {
                            syn::NestedMeta::Meta(ref inner) => {
                                let path = inner.path();
                                Ok((
                                    path,
                                    FromMeta::from_meta(inner).map_err(|e| e.at_path(&path)),
                                ))
                            }
                            syn::NestedMeta::Lit(_) => Err(Error::unsupported_format("literal")),
                        }
                    });

                let mut errors = Error::accumulator();
                // We need to track seen keys separately from the final map, since a seen key with an
                // Err value won't go into the final map but should trigger a duplicate field error.
                //
                // This is a set of $key rather than Path to avoid the possibility that a key type
                // parses two paths of different values to the same key value.
                let mut seen_keys = HashSet::with_capacity(nested.len());

                // The map to return in the Ok case. Its size will always be exactly nested.len(),
                // since otherwise ≥1 field had a problem and the entire map is dropped immediately
                // when the function returns `Err`.
                let mut map = HashMap::with_capacity_and_hasher(nested.len(), Default::default());

                for item in pairs {
                    if let Some((path, value)) = errors.handle(item) {
                        let key: $key = match KeyFromPath::from_path(path) {
                            Ok(k) => k,
                            Err(e) => {
                                errors.push(e);

                                // Surface value errors even under invalid keys
                                errors.handle(value);

                                continue;
                            }
                        };

                        let already_seen = seen_keys.contains(&key);

                        if already_seen {
                            errors.push(Error::duplicate_field(&key.to_display()).with_span(path));
                        }

                        match value {
                            Ok(_) if already_seen => {}
                            Ok(val) => {
                                map.insert(key.clone(), val);
                            }
                            Err(e) => {
                                errors.push(e);
                            }
                        }

                        seen_keys.insert(key);
                    }
                }

                errors.finish_with(map)
            }
        }
    };
}

// This is done as a macro rather than a blanket impl to avoid breaking backwards compatibility
// with 0.12.x, while still sharing the same impl.
hash_map!(String);
hash_map!(syn::Ident);
hash_map!(syn::Path);

/// Tests for `FromMeta` implementations. Wherever the word `ignore` appears in test input,
/// it should not be considered by the parsing.
#[cfg(test)]
mod tests {
    use proc_macro2::TokenStream;
    use quote::quote;
    use syn::parse_quote;

    use crate::{Error, FromMeta, Result};

    /// parse a string as a syn::Meta instance.
    fn pm(tokens: TokenStream) -> ::std::result::Result<syn::Meta, String> {
        let attribute: syn::Attribute = parse_quote!(#[#tokens]);
        attribute.parse_meta().map_err(|_| "Unable to parse".into())
    }

    fn fm<T: FromMeta>(tokens: TokenStream) -> T {
        FromMeta::from_meta(&pm(tokens).expect("Tests should pass well-formed input"))
            .expect("Tests should pass valid input")
    }

    #[test]
    fn unit_succeeds() {
        fm::<()>(quote!(ignore));
    }

    #[test]
    #[allow(clippy::bool_assert_comparison)]
    fn bool_succeeds() {
        // word format
        assert_eq!(fm::<bool>(quote!(ignore)), true);

        // bool literal
        assert_eq!(fm::<bool>(quote!(ignore = true)), true);
        assert_eq!(fm::<bool>(quote!(ignore = false)), false);

        // string literals
        assert_eq!(fm::<bool>(quote!(ignore = "true")), true);
        assert_eq!(fm::<bool>(quote!(ignore = "false")), false);
    }

    #[test]
    fn char_succeeds() {
        // char literal
        assert_eq!(fm::<char>(quote!(ignore = '😬')), '😬');

        // string literal
        assert_eq!(fm::<char>(quote!(ignore = "😬")), '😬');
    }

    #[test]
    fn string_succeeds() {
        // cooked form
        assert_eq!(&fm::<String>(quote!(ignore = "world")), "world");

        // raw form
        assert_eq!(&fm::<String>(quote!(ignore = r#"world"#)), "world");
    }

    #[test]
    #[allow(clippy::float_cmp)] // we want exact equality
    fn number_succeeds() {
        assert_eq!(fm::<u8>(quote!(ignore = "2")), 2u8);
        assert_eq!(fm::<i16>(quote!(ignore = "-25")), -25i16);
        assert_eq!(fm::<f64>(quote!(ignore = "1.4e10")), 1.4e10);
    }

    #[test]
    fn int_without_quotes() {
        assert_eq!(fm::<u8>(quote!(ignore = 2)), 2u8);
        assert_eq!(fm::<u16>(quote!(ignore = 255)), 255u16);
        assert_eq!(fm::<u32>(quote!(ignore = 5000)), 5000u32);

        // Check that we aren't tripped up by incorrect suffixes
        assert_eq!(fm::<u32>(quote!(ignore = 5000i32)), 5000u32);
    }

    #[test]
    #[allow(clippy::float_cmp)] // we want exact equality
    fn float_without_quotes() {
        assert_eq!(fm::<f32>(quote!(ignore = 2.)), 2.0f32);
        assert_eq!(fm::<f32>(quote!(ignore = 2.0)), 2.0f32);
        assert_eq!(fm::<f64>(quote!(ignore = 1.4e10)), 1.4e10f64);
    }

    #[test]
    fn meta_succeeds() {
        use syn::Meta;

        assert_eq!(
            fm::<Meta>(quote!(hello(world, today))),
            pm(quote!(hello(world, today))).unwrap()
        );
    }

    #[test]
    fn hash_map_succeeds() {
        use std::collections::HashMap;

        let comparison = {
            let mut c = HashMap::new();
            c.insert("hello".to_string(), true);
            c.insert("world".to_string(), false);
            c.insert("there".to_string(), true);
            c
        };

        assert_eq!(
            fm::<HashMap<String, bool>>(quote!(ignore(hello, world = false, there = "true"))),
            comparison
        );
    }

    /// Check that a `HashMap` cannot have duplicate keys, and that the generated error
    /// is assigned a span to correctly target the diagnostic message.
    #[test]
    fn hash_map_duplicate() {
        use std::collections::HashMap;

        let err: Result<HashMap<String, bool>> =
            FromMeta::from_meta(&pm(quote!(ignore(hello, hello = false))).unwrap());

        let err = err.expect_err("Duplicate keys in HashMap should error");

        assert!(err.has_span());
        assert_eq!(err.to_string(), Error::duplicate_field("hello").to_string());
    }

    #[test]
    fn hash_map_multiple_errors() {
        use std::collections::HashMap;

        let err = HashMap::<String, bool>::from_meta(
            &pm(quote!(ignore(hello, hello = 3, hello = false))).unwrap(),
        )
        .expect_err("Duplicates and bad values should error");

        assert_eq!(err.len(), 3);
        let errors = err.into_iter().collect::<Vec<_>>();
        assert!(errors[0].has_span());
        assert!(errors[1].has_span());
        assert!(errors[2].has_span());
    }

    #[test]
    fn hash_map_ident_succeeds() {
        use std::collections::HashMap;
        use syn::parse_quote;

        let comparison = {
            let mut c = HashMap::<syn::Ident, bool>::new();
            c.insert(parse_quote!(first), true);
            c.insert(parse_quote!(second), false);
            c
        };

        assert_eq!(
            fm::<HashMap<syn::Ident, bool>>(quote!(ignore(first, second = false))),
            comparison
        );
    }

    #[test]
    fn hash_map_ident_rejects_non_idents() {
        use std::collections::HashMap;

        let err: Result<HashMap<syn::Ident, bool>> =
            FromMeta::from_meta(&pm(quote!(ignore(first, the::second))).unwrap());

        err.unwrap_err();
    }

    #[test]
    fn hash_map_path_succeeds() {
        use std::collections::HashMap;
        use syn::parse_quote;

        let comparison = {
            let mut c = HashMap::<syn::Path, bool>::new();
            c.insert(parse_quote!(first), true);
            c.insert(parse_quote!(the::second), false);
            c
        };

        assert_eq!(
            fm::<HashMap<syn::Path, bool>>(quote!(ignore(first, the::second = false))),
            comparison
        );
    }

    /// Tests that fallible parsing will always produce an outer `Ok` (from `fm`),
    /// and will accurately preserve the inner contents.
    #[test]
    fn darling_result_succeeds() {
        fm::<Result<()>>(quote!(ignore)).unwrap();
        fm::<Result<()>>(quote!(ignore(world))).unwrap_err();
    }

    /// Test punctuated
    #[test]
    fn test_punctuated() {
        fm::<syn::punctuated::Punctuated<syn::FnArg, syn::token::Comma>>(quote!(
            ignore = "a: u8, b: Type"
        ));
        fm::<syn::punctuated::Punctuated<syn::Expr, syn::token::Comma>>(quote!(ignore = "a, b, c"));
    }

    #[test]
    fn test_expr_array() {
        fm::<syn::ExprArray>(quote!(ignore = "[0x1, 0x2]"));
        fm::<syn::ExprArray>(quote!(ignore = "[\"Hello World\", \"Test Array\"]"));
    }

    #[test]
    fn test_expr() {
        fm::<syn::Expr>(quote!(ignore = "x + y"));
        fm::<syn::Expr>(quote!(ignore = "an_object.method_call()"));
        fm::<syn::Expr>(quote!(ignore = "{ a_statement(); in_a_block }"));
    }

    #[test]
    fn test_expr_path() {
        fm::<syn::ExprPath>(quote!(ignore = "std::mem::replace"));
        fm::<syn::ExprPath>(quote!(ignore = "x"));
        fm::<syn::ExprPath>(quote!(ignore = "example::<Test>"));
    }

    #[test]
    fn test_number_array() {
        assert_eq!(
            fm::<Vec<u8>>(quote!(ignore = "[16, 0xff]")),
            vec![0x10, 0xff]
        );
        assert_eq!(
            fm::<Vec<u16>>(quote!(ignore = "[32, 0xffff]")),
            vec![0x20, 0xffff]
        );
        assert_eq!(
            fm::<Vec<u32>>(quote!(ignore = "[48, 0xffffffff]")),
            vec![0x30, 0xffffffff]
        );
        assert_eq!(
            fm::<Vec<u64>>(quote!(ignore = "[64, 0xffffffffffffffff]")),
            vec![0x40, 0xffffffffffffffff]
        );
        assert_eq!(
            fm::<Vec<usize>>(quote!(ignore = "[80, 0xffffffff]")),
            vec![0x50, 0xffffffff]
        );
    }
}