1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
//! Totalistic rules with von Neumann neighborhood.
use super::Gen;
use crate::ParseRuleError;
rule_struct!(Neumann);
impl Neumann {
parse_bs!(4);
parse_rule!('V');
}
/// A trait for parsing totalistic rules with
/// [von Neumann neighborhood](http://www.conwaylife.com/wiki/Von_Neumann_neighbourhood).
///
/// The `b` / `s` data of this type of rules consists of numbers of live neighbors
/// that cause a cell to be born / survive.
///
/// # Examples
///
/// ```
/// use ca_rules::ParseNeumann;
///
/// #[derive(Debug, Eq, PartialEq)]
/// struct Rule {
/// b: Vec<u8>,
/// s: Vec<u8>,
/// }
///
/// impl ParseNeumann for Rule {
/// fn from_bs(b: Vec<u8>, s: Vec<u8>) -> Self {
/// Rule { b, s }
/// }
/// }
///
/// let life = Rule::parse_rule("B2/S013V").unwrap();
///
/// assert_eq!(
/// life,
/// Rule {
/// b: vec![2],
/// s: vec![0, 1, 3],
/// }
/// )
/// ```
pub trait ParseNeumann {
/// Construct the rule from `b` / `s` data.
fn from_bs(b: Vec<u8>, s: Vec<u8>) -> Self;
/// The parser.
fn parse_rule(input: &str) -> Result<Self, ParseRuleError>
where
Self: Sized,
{
let Neumann { b, s } = Neumann::parse_rule(input)?;
Ok(Self::from_bs(b, s))
}
}
/// A trait for parsing totalistic [Generations](http://www.conwaylife.com/wiki/Generations) rules
/// with [von Neumann neighborhood](http://www.conwaylife.com/wiki/Von_Neumann_neighbourhood).
///
/// The `b` / `s` data of this type of rules consists of numbers of live neighbors
/// that cause a cell to be born / survive.
///
/// # Examples
///
/// ```
/// use ca_rules::ParseNeumannGen;
///
/// #[derive(Debug, Eq, PartialEq)]
/// struct Rule {
/// b: Vec<u8>,
/// s: Vec<u8>,
/// gen: usize,
/// }
///
/// impl ParseNeumannGen for Rule {
/// fn from_bsg(b: Vec<u8>, s: Vec<u8>, gen: usize) -> Self {
/// Rule { b, s, gen }
/// }
/// }
///
/// let life = Rule::parse_rule("B2/S013/3V").unwrap();
///
/// assert_eq!(
/// life,
/// Rule {
/// b: vec![2],
/// s: vec![0, 1, 3],
/// gen: 3,
/// }
/// )
/// ```
pub trait ParseNeumannGen {
/// Construct the rule from `b` / `s` data and the number of states.
fn from_bsg(b: Vec<u8>, s: Vec<u8>, gen: usize) -> Self;
/// The parser.
fn parse_rule(input: &str) -> Result<Self, ParseRuleError>
where
Self: Sized,
{
let Gen {
rule: Neumann { b, s },
gen,
} = Neumann::parse_rule_gen(input)?;
Ok(Self::from_bsg(b, s, gen))
}
}
#[cfg(test)]
mod tests {
use super::*;
struct Rule;
impl ParseNeumann for Rule {
fn from_bs(_b: Vec<u8>, _s: Vec<u8>) -> Self {
Rule
}
}
#[test]
fn valid_rules() -> Result<(), ParseRuleError> {
Rule::parse_rule("B3/S23V")?;
Rule::parse_rule("B3S23V")?;
Rule::parse_rule("b3s23v")?;
Rule::parse_rule("23/3V")?;
Rule::parse_rule("23/v")?;
Ok(())
}
#[test]
fn invalid_rules() {
assert_eq!(
Rule::parse_rule("B3/S23va").err(),
Some(ParseRuleError::ExtraJunk)
);
assert_eq!(
Rule::parse_rule("B3V/S23").err(),
Some(ParseRuleError::Missing('S'))
);
assert_eq!(
Rule::parse_rule("B3/S23").err(),
Some(ParseRuleError::Missing('V'))
);
assert_eq!(
Rule::parse_rule("B3/S25V").err(),
Some(ParseRuleError::Missing('V'))
);
assert_eq!(
Rule::parse_rule("233v").err(),
Some(ParseRuleError::Missing('/'))
);
}
}